Sublinear Ambiguity
نویسنده
چکیده
A context-free grammar G is ambiguous if there is a word that can be generated by G with at least two different derivation trees. Ambiguous grammars are often distinguished by their degree of ambiguity, which is the maximal number of derivation trees for the words generated by them. If there is no such upper bound G is said to be ambiguous of infinite degree. By considering how many derivation trees a word of at most length n may have, we can distinguish context-free grammars with infinite degree of ambiguity by the growth-rate of their ambiguity with respect to the length of the words. It is known that each cycle-free context-free grammar G is either exponentially ambiguous or its ambiguity is bounded by a polynomial. Until now there have only been examples of context-free languages with inherent ambiguity 2 and Θ(n) for each d ∈ N0. In this paper first examples of (linear) context-free languages with nonconstant sublinear ambiguity are presented.
منابع مشابه
Sublinear Models for Graphs
This contribution extends linear models for feature vectors to sublinear models for graphs and analyzes their properties. The results are (i) a geometric interpretation of sublinear classifiers, (ii) a generic learning rule based on the principle of empirical risk minimization, (iii) a convergence theorem for the margin perceptron in the sublinearly separable case, and (iv) the VC-dimension of ...
متن کاملOn sublinear inequalities for mixed integer conic programs
This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...
متن کاملQuasi-sure analysis, aggregation and dual representations of sublinear expectations in general spaces
We consider coherent sublinear expectations on a measurable space, without assuming the existence of a dominating probability measure. By considering a decomposition of the space in terms of the supports of the measures representing our sublinear expectation, we give a simple construction, in a quasi-sure sense, of the (linear) conditional expectations, and hence give a representation for the c...
متن کاملSublinear deviation between geodesics and sample paths
We give a proof of the sublinear tracking property for sample paths of random walks on various groups acting on spaces with hyperbolic-like properties. As an application, we prove sublinear tracking in Teichmüller distance for random walks on mapping class groups, and on Cayley graphs of a large class of finitely generated groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000